1982). Table 1 shows atomic positional parameters and Table 2 the bond lengths and angles. Fig. 1 shows an ORTEP plot of the molecule and Fig. 2 shows the contents of the unit cell.

Related literature. Pyrromethene- BF_{2} complexes are of interest because of their pronounced fluorescence (Vos de Wael, Pardoen, van Koeveringe \& Lugtenburg, 1977). The structures of BF_{2} complexes of 1,2,3,4-tetrahydro-1,10-phenanthroline (Klebe, Hensen \& Fuess, 1983) and octaethyl-21 $\mathrm{H}, 24 \mathrm{H}$-bilin-1,9-dione (Bonfiglio et al., 1983), which forms a similar s-indacene ring system, have been reported.

References

Bonfiglio, J. V., Bonnett, R., Buckley, D. G., Hamzetash, D., Hursthouse, M. B., Abdul Malik, K. M., McDonagh, A. F. \& Trotter, J. (1983). Tetrahedron, 39, 1865-1874.

Frenz, B. A. (1982). The Enraf-Nonius CAD-4 Structure Determination Program - A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. In Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi. Delft Univ. Press.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Klebe, G., Hensen, K. \& Fuess, H. (1983). Chem. Ber. 116, 3125-3132.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England and Louvain, Belgium.
Treibs, A. \& Kreuzer, F.-H. (1968). Justus Leibigs Ann. Chem. 718, 208-223.
Vos de Wael, E., Pardoen, J. A., van Koeveringe, J. A. \& Lugtenburg, J. (1977). Recl Trav. Chim. Pays-Bas, 96, 306-309.

Acta Cryst. (1990). C46, 1150-1152

1-(1-Chlorovinyl)-2,7-dimethoxynaphthalene

By Philippe Prince, Kevin L. Evans, Keshia R. Boss, Frank R. Fronczek and Richard D. Gandour*
Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA

(Received 11 October 1989; accepted 3 January 1990)

Abstract

C}_{14} \mathrm{H}_{13} \mathrm{ClO}_{2}, \quad M_{r}=248 \cdot 71\), monoclinic, $P 2_{1} / n, a=11.291$ (1), $b=7.343$ (1), $c=15.223$ (2) \AA, $\beta=90.899(8)^{\circ}, \quad V=1262.0(5) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.309 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.54184 \AA, \quad \mu=$ $26.0 \mathrm{~cm}^{-1}, F(000)=520, T=299 \mathrm{~K}, R=0.041$ for 2405 observations (of 2516 unique data). The average deviation from planarity is 0.019 (2) \AA with a maximum of 0.035 (1) \AA for the fused rings. The dihedral angle between the naphthalene system and the chlorovinyl group is $101.93(4)^{\circ}$. The methoxy group ortho to the chlorovinyl adopts a conformation with the methyl group anti to the neighboring α carbon of the ring, with a $\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{C}$ torsion angle of $-175 \cdot 6(2)^{\circ}$. The other methoxy group has the methyl syn to the neighboring α carbon, with a $\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{C}$ torsion angle of $1.9(3)^{\circ}$.

Experimental. The title compound (1) was prepared by the reaction of phosphorous trichloride and phosphorous pentachloride on 1-acetyl-2,7-dimethoxynaphthalene in benzene at room temperature (Buckle

[^0]0108-2701/90/061150-03\$03.00
\& Rockewell, 1985). Colorless irregular crystals of (1) were isolated by recrystallization from ether/ hexane. Crystal size $0.68 \times 0.60 \times 0.52 \mathrm{~mm}$, mounted on a glass fiber in random orientation on an EnrafNonius CAD-4 κ-axis diffractometer equipped with a graphite monochromator, $\lambda(\mathrm{Cu} K \alpha)=1.54184 \AA$. Cell dimensions from setting angles of 25 reflections having $25<\theta<29^{\circ}$. Space group determined to be $P 2_{1} / n$ from systematic absences $h 0 l$ with $h+1$ odd, $0 k 0$ with k odd.

(1)

Data having $2<2 \theta<150^{\circ}, 0 \leq h \leq 14,0 \leq k \leq 9$, $-19 \leq l \leq 19$ were collected using $\omega-2 \theta$ scans designed for $I=25 \sigma(I)$, subject to max. scan time $=$ © 1990 International Union of Crystallography

Table 1. Fractional atomic coordinates and equivalent isotropic temperature factors

	$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}$.			
	x	y	2	$B_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{Cl}(1)$	0.72000 (4)	0.16796 (6)	0.41091 (3)	$5 \cdot 339$ (9)
Ol	0.6591 (1)	0.5721 (2)	0.49995 (7)	4.75 (2)
02	1.11695 (9)	0.4128 (2)	0.18145 (8)	5.09 (2)
Cl	0.8071 (1)	0.5125 (2)	$0 \cdot 39940$ (8)	3.37 (2)
C2	0.7713 (1)	0.6074 (2)	0.47243 (9)	$3 \cdot 79$ (3)
C3	0.8481 (2)	0.7311 (2)	0.5154 (1)	4.41 (3)
C4	0.9589 (2)	0.7582 (2)	0.4833 (1)	4.45 (3)
C5	0.9978 (1)	0.6705 (2)	0.4076 (1)	3.87 (3)
C6	1.1110(1)	0.7031 (2)	0.3709 (1)	4.73 (3)
C7	1.1463 (1)	0.6184 (3)	0.2974 (1)	4.80 (3)
C8	1.0717 (1)	0.4889 (2)	0.25549 (9)	4.08 (3)
C9	0.9620 (1)	0.4503 (2)	0.28868 (9)	3.58 (2)
C10	0.9223 (1)	0.5416 (2)	0.36457 (8)	$3 \cdot 32$ (2)
C11	0.7255 (1)	0.3797 (2)	0.35761 (9)	3.49 (2)
C12	0.6607 (2)	0.4061 (2)	$0 \cdot 2851$ (1)	4.61 (3)
C13	0.6139 (2)	0.6747 (3)	0.5711 (1)	5.70 (4)
C14	1.0441 (2)	0.2894 (3)	0.1343 (1)	6.07 (4)

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Cl}(1)-\mathrm{Cl} 1$	1.755 (1)	$\mathrm{Cl}-\mathrm{ClO}$	1.428 (2)
C5-C10	1.427 (2)	$\mathrm{Ol}-\mathrm{C} 2$	1.366 (2)
$\mathrm{Cl}-\mathrm{Cll}$	1.479 (2)	C6-C7	$1 \cdot 346$ (2)
$\mathrm{Ol}-\mathrm{Cl} 3$	1.420 (2)	C2-C3	1.410 (2)
C7-C8	1.415 (2)	O2-C8	$1 \cdot 365$ (2)
C3-C4	1.365 (2)	C8-C9	1.374 (2)
$\mathrm{O} 2-\mathrm{Cl} 4$	1.412 (2)	C4-C5	$1 \cdot 397$ (2)
C9-C10	1.415 (2)	$\mathrm{Cl}-\mathrm{C} 2$	$1 \cdot 378$ (2)
C5-C6	1.422 (2)	Cl1-Cl2	$1 \cdot 329$ (2)
$\mathrm{C} 2-\mathrm{Ol}-\mathrm{Cl} 3$	$118 \cdot 6$ (1)	C3-C4-C5	122.0 (1)
C8-C9-C10	$120 \cdot 1$ (1)	C8-O2-C14	117.4 (1)
C4-C5-C6	$122 \cdot 8$ (1)	$\mathrm{Cl}-\mathrm{ClO}-\mathrm{C} 5$	118.1 (1)
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{Cl} 0$	$120 \cdot 3$ (1)	C4-C5-C10	119.4 (1)
$\mathrm{Cl}-\mathrm{Cl0}-\mathrm{C} 9$	122.3 (1)	$\mathrm{C} 2-\mathrm{Cl}-\mathrm{Cll}$	119.5 (1)
C6-C5-C10	117.8 (1)	C5-C10-C9	119.6 (1)
$\mathrm{Cl0}-\mathrm{Cl}-\mathrm{Cl} 1$	$120 \cdot 2$ (1)	C5-C6-C7	121.8 (2)
$\mathrm{Cl}(1)-\mathrm{Cll}-\mathrm{Cl}$	114.31 (9)	$\mathrm{Ol}-\mathrm{C} 2-\mathrm{Cl}$	115.9 (1)
C6-C7-C8	$120 \cdot 2$ (1)	$\mathrm{Cl}(1)-\mathrm{Cl1}-\mathrm{Cl2}$	119.4 (1)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$123 \cdot 1$ (1)	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 7$	114.8 (1)
$\mathrm{Cl}-\mathrm{Cl1}-\mathrm{Cl2}$	126.3 (1)	$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	121.0(1)
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9$	$124 \cdot 8$ (1)	C2-C3-C4	$119 \cdot 2$ (1)
C7-C8-C9	$120 \cdot 4$ (1)		

90 s , scan rates varied $0.61-3 \cdot 30^{\circ} \mathrm{min}^{-1}$. Three reflections ($400,020,004$) were measured every 166 min , and their intensities exhibited only random fluctuations during data collection. Lorentz and polarization corrections were applied. An empirical absorption correction based on a series of ψ scans was applied to the data. Relative transmission coefficients ranged from 0.697 to 0.997 with an average value of $0 \cdot 846$. The extinction coefficient was refined in the least squares to $g=6.9(5) \times 10^{-6}$, where the correction factor $\left(1+g I_{c}\right)^{-1}$ was applied to $F_{c} . R_{\mathrm{int}}=$ 0.019 for averaging $0 k l$ and $0 k \bar{l}$. Structure solved by direct methods using MULTAN (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1982), and successive difference Fourier syntheses. The structure was refined by weighted full-matrix least squares; non-H atoms refined anisotropically; H atoms refined isotropically.

The function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ and weights were assigned as $w=4 F_{o}{ }^{2} \mathrm{Lp}\left[S^{2}\left(C+R^{2} B\right)+\right.$ $\left.\left(0.02 F_{o}^{2}\right)^{2}\right]^{-1}$, where $S=$ scan rate, $C=$ total integrated peak count, $R=$ scan time/background counting time, $B=$ total background count, $\mathrm{Lp}=$ Lorentz-polarization factor, using Enraf-Nonius SDP (Frenz \& Okaya, 1980), scattering factors from Cromer \& Waber (1974), anomalous coefficients from Cromer (1974). Of 2516 unique data, 2405 reflections having $I>3 \sigma(I)$ were used in the refinement. The final cycle included 207 variables and converged (largest $\Delta / \sigma=0.01$) with $R=0.041$, $w R=0.066, R($ all $)=0.042$, and $S=4.51$. The max. residual density was $0.32 \mathrm{e}^{-3}, \mathrm{~min} .-0.31 \mathrm{e} \AA^{-3}$. Table 1 presents the final coordinates* and equivalent isotropic thermal parameters, and Table 2 presents bond distances and angles. Fig. 1 illustrates the molecule and the numbering scheme, and Fig. 2 shows the unit cell.

Related literature. Crystal structures of 2,7-dimethoxynaphthalene: Prince, Fronczek \& Gandour

[^1]Fig. 1. Numbering scheme and thermal ellipsoids drawn at the 40% probability level. H atoms are drawn as circles with arbitrary radius.

Fig. 2. Stereoview of the unit cell.
(1989a) and 1-acetyl-2,7-dimethoxynaphthalene: Prince, Fronczek \& Gandour (1989b).

Support for this work is provided by a grant from the National Institutes of Health. KRB thanks the ACS Project SEED for support.

References

Buckle, D. R. \& Rockewell, C. J. M. (1985). J. Chem. Soc. Perkin Trans. 1, pp. 2443-2446.
Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1 Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Frenz, B. A. \& Okaya, Y. (1980). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Prince, P., Fronczek, F. R. \& Gandour, R. D. (1989a). Acta Cryst. C45, 1255-1256.
Prince, P., Fronczek, F. R. \& Gandour, R. D. (1989b). Acta Cryst. C45, 1256-1258.

Acta Cryst. (1990). C46, 1152-1153

Structure of 2-(5-Methylthien-2-yl)-2,5-dihydro-3H-pyrazolo[4,3-c]quinolin-3-one

By Motoo Shiro
Shionogi Research Laboratories, Shionogi \& Co. Ltd, Fukushima-ku, Osaka 553, Japan

(Received 25 December 1989; accepted 23 January 1990)

Abstract

C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{OS}, \quad M_{r}=281 \cdot 33\), monoclinic, $P 2_{1} / c, a=13.550$ (4), $b=8.723$ (2), $c=14.052$ (2) \AA, $\beta=130 \cdot 88(1)^{\circ}, \quad V=1255 \cdot 8(6) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.488 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{CuK} \mathrm{\alpha})=1.54178 \AA, \quad \mu=$ $2.22 \mathrm{~mm}^{-1}, F(000)=584, T=295 \mathrm{~K}, R=0.076$ for 1474 reflections. The molecule is almost planar. The intermolecular hydrogen bond $\mathrm{NH} \cdots \mathrm{O}, 2.750$ (8) \AA, is formed between N at position 5 of one pyrazoloquinoline skeleton and $\mathrm{C}=\mathrm{O}$ at position 3 of another related by a twofold screw axis.

Experimental. Needle-like yellow crystals were obtained from ethanol. Crystal dimensions 0.7×0.1 $\times 0.02 \mathrm{~mm}$. Rigaku AFC- 5 diffractometer, graphitemonochromatized $\mathrm{Cu} K \alpha$. Unit-cell parameters were refined by 2θ angles for 20 reflections in the range 30 $<2 \theta<40^{\circ}$. Intensities were measured up to $2 \theta=$ 130° in $h 0 / 15, k-10 / 0$ and $l-16 / 12, R_{\text {int }}=0.035$, $\omega-2 \theta$ scans, ω-scan width $(1.0+0 \cdot 2 \tan \theta)^{\circ}$, three standard reflections monitored every 100 measurements showed no significant change. 2130 unique reflections were measured, 1480 intensities were observed $\left[F_{o}>3 \sigma\left(F_{o}\right)\right]$. Structure solved by MULTAN84 (Main, Germain \& Woolfson, 1984) and refined by block-diagonal least squares to minimize $\sum\left(w|\Delta F|^{2}\right)$. Absorption corrections by an empirical method (Walker \& Stuart, 1983) applied after isotropic refinement (max. and min. transmission factors 1.44 and 0.75). H atoms located on a difference density map. Positional parameters for all atoms and anisotropic thermal parameters for non-H
atoms refined. Temperature factor of each H atom set equal to $B_{\text {eq }}$ of the bonded atom. $w=\left[\sigma^{2}\left(F_{o}\right)+\right.$ $\left.0.00440\left|F_{o}\right|^{2}\right]^{-1}, w=0$ for four reflections with $w^{1 / 2}|\Delta F| \geq 4$ and two very strong ones. Final $R=$ $0.076, w R=0.100$ and $S=1.137$. The relatively large R value is assumed to be due to the poor quality of intensity data collected using a very small crystal. Highest peak in the final difference map $0.3 \mathrm{e} \AA^{-3}$. Max. Δ / σ in the final cycle 0.08 . Atomic scattering

Table 1. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic temperature factors $\left(\AA^{2} \times 10\right)$ with e.s.d.'s in parentheses

	x	y	z	$B_{\text {eq }}{ }^{*}$
$\mathrm{N}(1)$	5685 (4)	6725 (5)	803 (4)	27 (2)
N(2)	6644 (4)	5991 (5)	852 (4)	24 (2)
C(3)	6551 (5)	6273 (7)	-171 (5)	27 (2)
$\mathrm{C}(4)$	4977 (5)	8085 (7)	-1988 (5)	27 (2)
N(5)	3991 (4)	9056 (6)	-2457 (4)	29 (2)
C(6)	2423 (5)	10356 (7)	-2474 (5)	29 (2)
C(7)	1878 (5)	10626 (7)	-1932 (5)	32 (3)
C(8)	2344 (6)	9894 (7)	-841 (6)	36 (3)
C(9)	3355 (5)	8860 (7)	-264 (5)	29 (3)
C(10)	3930 (5)	8548 (6)	-791 (4)	24 (2)
C(11)	3436 (5)	9307 (6)	-1911 (5)	26 (2)
C(12)	5006 (5)	7520 (6)	-262 (4)	23 (2)
$\mathrm{C}(13)$	5489 (5)	7308 (6)	-911 (4)	24 (2)
O(14)	7276 (4)	5669 (5)	-338(4)	34 (2)
C(15)	7566 (5)	5036 (6)	1886 (5)	27 (2)
S(16)	7516 (1)	4763 (2)	3055 (1)	29 (1)
C(17)	8820 (5)	3516 (7)	3826 (5)	32 (3)
C(18)	9278 (6)	3363 (7)	3230 (6)	34 (3)
C(19)	8585 (5)	4233 (7)	2113 (5)	25 (2)
C(20)	9324 (6)	2719 (8)	5021 (6)	42 (3)
${ }^{*} B_{\text {cq }}=\frac{4}{3} \sum_{i} \Sigma_{j} \boldsymbol{\beta}_{i j} \mathbf{a}_{\mathbf{i}} \mathbf{a} \mathbf{a}$.				

© 1990 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of H -atom coordinates, bond distances and angles involving H atoms, anisotropic thermal parameters, least-squaresplanes data and structure-factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52575 (17 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

